Stimulatory and Inhibitory Functions of the R Domain on CFTR Chloride Channel.

نویسنده

  • Jianjie Ma
چکیده

CFTR is a chloride channel whose gating process involves coordinated interactions among the regulatory (R) domain and the nucleotide-binding folds (NBFs). Protein kinase A phosphorylation of serine residues renders the R domain from inhibitory to stimulatory and enables ATP binding and hydrolysis at the NBFs, which in turn control opening and closing of the chloride channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preferential Phosphorylation of R-domain Serine 768 Dampens Activation of CFTR Channels by PKA

CFTR (cystic fibrosis transmembrane conductance regulator), the protein whose dysfunction causes cystic fibrosis, is a chloride ion channel whose gating is controlled by interactions of MgATP with CFTR's two cytoplasmic nucleotide binding domains, but only after several serines in CFTR's regulatory (R) domain have been phosphorylated by cAMP-dependent protein kinase (PKA). Whereas eight R-domai...

متن کامل

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

Phosphorylation-dependent block of cystic fibrosis transmembrane conductance regulator chloride channel by exogenous R domain protein.

The cystic fibrosis transmembrane conductance regulator (CFTR) constitutes a linear conductance chloride channel, which is regulated by cAMP-dependent protein kinase phosphorylation at multiple sites located in the intracellular regulatory (R) domain. Studies in a lipid bilayer system, reported here, provide evidence for the control of CFTR chloride channel by its R domain. The exogenous R doma...

متن کامل

Dibasic phosphorylation sites in the R domain of CFTR have stimulatory and inhibitory effects on channel activation.

To better understand the mechanisms by which PKA-dependent phosphorylation regulates CFTR channel activity, we have assayed open probabilities (P(o)), mean open time, and mean closed time for a series of CFTR constructs with mutations at PKA phosphorylation sites in the regulatory (R) domain. Forskolin-stimulated channel activity was recorded in cell-attached and inside-out excised patches from...

متن کامل

Structure and function of the CFTR chloride channel.

Structure and Function of the CFTR Chloride Channel. Physiol. Rev. 79, Suppl.: S23-S45, 1999. - The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ABC transporter family that forms a novel Cl- channel. It is located predominantly in the apical membrane of epithelia where it mediates transepithelial salt and liquid movement. Dysfunction of CFTR causes the ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2000